Parallel Genetic Algorithm based Thresholding Schemes for Image Segmentation
نویسنده
چکیده
In this thesis, the problem of image segmentation has been addressed using the notion of thresholding. Since the focus of this work is primarily on object/objects background classification and fault detection in a given scene, the segmentation problem is viewed as a classification problem. In this regard, the notion of thresholding has been used to classify the range of gray values and hence classifies the image. The gray level distributions of the original image or the proposed feature image have been used to obtain the optimal threshold. Initially, PGA based class models have been developed to classify different classes of a nonlinear multimodal function. This problem is formulated where the nonlinear multimodal function is viewed as consisting of multiple class distributions. Each class could be represented by the niche or peaks of that class. Hence, the problem has been formulated to detect the peaks of the functions. PGA based clustering algorithm has been proposed to maintain stable sub-populations in the niches and hence the peaks could be detected. A new interconnection model has been proposed for PGA to accelerate the rate of convergence to the optimal solution. Convergence analysis of the proposed PGA based algorithm has been carried out and is shown to converge to the solution. The proposed PGA based clustering algorithm could successfully be tested for different classes and is found to converge much faster than that of GA based clustering algorithm. Two thresholding schemes namely Feature Less (FL) and Feature Based (FB) thresholding have been proposed using the PGA based clustering algorithm and PGA based optimization strategy. Both the approaches have been tested with images of different classes and it has been found that FB approach proved to be better than FL approach. The performance of the proposed approaches are found to be better than Otsu’s and Kwon’s methods in many cases. A Minimum Mean Square Error (MMSE) based FL and FB schemes have been proposed to deal with fault detection in a given scene whose histogram does not exhibit clear bi-modality and almost becomes unimodal. These schemes also employ the proposed PGA based clustering
منابع مشابه
Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملAn Improved Pixon-Based Approach for Image Segmentation
An improved pixon-based method is proposed in this paper for image segmentation. In thisapproach, a wavelet thresholding technique is initially applied on the image to reduce noise and toslightly smooth the image. This technique causes an image not to be oversegmented when the pixonbasedmethod is used. Indeed, the wavelet thresholding, as a pre-processing step, eliminates theunnecessary details...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملA comparative performance of gray level image thresholding using normalized graph cut based standard S membership function
In this research paper, we use a normalized graph cut measure as a thresholding principle to separate an object from the background based on the standard S membership function. The implementation of the proposed algorithm known as fuzzy normalized graph cut method. This proposed algorithm compared with the fuzzy entropy method [25], Kittler [11], Rosin [21], Sauvola [23] and Wolf [33] method. M...
متن کاملImproving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth
Background:Â Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective:Â This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009